资源类型

期刊论文 608

会议视频 33

会议信息 4

年份

2023 82

2022 122

2021 78

2020 52

2019 29

2018 29

2017 27

2016 20

2015 23

2014 17

2013 23

2012 15

2011 16

2010 15

2009 20

2008 15

2007 24

2006 5

2005 4

2004 5

展开 ︾

关键词

3D打印 13

院士大会 9

增材制造 7

经济 5

医学 3

空间可展开结构 3

营养健康 3

2020 2

3D生物打印 2

4D打印 2

FY-3卫星 2

创新设计 2

可视化 2

工程管理 2

支架 2

组织工程 2

能源 2

风云三号 2

&alpha 1

展开 ︾

检索范围:

排序: 展示方式:

WO3 nanomaterials synthesized via a sol-gel method and calcination for use as a CO gas sensor

Diah SUSANTI,A.A. Gede Pradnyana DIPUTRA,Lucky TANANTA,Hariyati PURWANINGSIH,George Endri KUSUMA,Chenhao WANG,Shaoju SHIH,Yingsheng HUANG

《化学科学与工程前沿(英文)》 2014年 第8卷 第2期   页码 179-187 doi: 10.1007/s11705-014-1431-0

摘要: Carbon monoxide is a poisonous and hazardous gas and sensitive sensor devices are needed to prevent humans from being poisoned by this gas. A CO gas sensor has been prepared from WO synthesized by a sol-gel method. The sensor chip was prepared by a spin-coating technique which deposited a thin film of WO on an alumina substrate. The chip samples were then calcined at 300, 400, 500 or 600 °C for 1 h. The sensitivities of the different sensor chips for CO gas were determined by comparing the changes in electrical resistance in the absence and presence of 50 ppm of CO gas at 200 °C. The WO calcined at 500 °C had the highest sensitivity. The sensitivity of this sensor was also measured at CO concentrations of 100 ppm and 200 ppm and at operating temperatures of 30 and 100 °C. Thermogravimetric analysis of the WO calcined at 500 °C indicated that this sample had the highest gas adsorption capacity. This preliminary research has shown that WO can serve as a CO gas sensor and that is should be further explored and developed.

关键词: WO3 nanomaterial     sol-gel     calcinations     CO gas sensor     sensitivity    

Comparison of the morphology and structure of WO

Diah Susanti, Stefanus Haryo N, Hasnan Nisfu, Eko Prasetio Nugroho, Hariyati Purwaningsih, George Endri Kusuma, Shao-Ju Shih

《化学科学与工程前沿(英文)》 2012年 第6卷 第4期   页码 371-380 doi: 10.1007/s11705-012-1215-3

摘要: Tungsten (VI) oxide (WO ) nanomaterials were synthesized by a sol-gel method using WCl and C H OH as precursors followed by calcination or hydrothermal treatment. X-Ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) equipped with energy dispersive X-ray spectroscopy (EDX) were used to characterize the structure and morphology of the materials. There were significant differences between the WO materials that were calcinated and those that were subjected to a hydrothermal process. The XRD results revealed that calcination temperatures of 300°C and 400°C gave hexagonal structures and temperatures of 500°C and 600°C gave monoclinic structures. The SEM images showed that an increase in calcination temperature led to a decrease in the WO powder particle size. The TEM analysis showed that several nanoparticles agglomerated to form bigger clusters. The hydrothermal process produced hexagonal structures for holding times of 12, 16, and 20 h and monoclinic structures for a holding time of 24 h. The SEM results showed transparent rectangular particles which according to the TEM results originated from the aggregation of several nanotubes.

关键词: WO3 nanomaterial     sol-gel method     calcination     hydrothermal    

Z-scheme CdS/WO on a carbon cloth enabling effective hydrogen evolution

《能源前沿(英文)》 2021年 第15卷 第3期   页码 678-686 doi: 10.1007/s11708-021-0768-6

摘要: Photocatalytic water splitting for hydrogen (H2) generation is a potential strategy to solve the problem of energy crisis and environmental deterioration. However, powder-like photocatalysts are difficult to recycle, and the agglomeration of particles would affect the photocatalytic activity. Herein, a direct Z-scheme CdS/WO3 composite photocatalyst was fabricated based on carbon cloth through a two-step process. With the support of carbon cloth, photocatalysts tend to grow uniformly for further applications. The experimental results showed that the H2 yield of adding one piece of CdS/WO3 composite material was 17.28 μmol/h, which was 5.5 times as compared to that of pure CdS-loaded carbon cloth material. A cycle experiment was conducted to verify the stability of the as-prepared material and the result demonstrated that the H2 generation performance of CdS/WO3 decreased slightly after 3 cycles. This work provides new ideas for the development of recyclable photocatalysts and has a positive significance for practical applications.

关键词: photocatalysis     CdS/WO3     carbon cloth     Z-scheme     hydrogen evolution    

Photoelectrocatalytic generation of H and S from toxic HS by using a novel BiOI/WO nanoflake array photoanode

《能源前沿(英文)》 2021年 第15卷 第3期   页码 744-751 doi: 10.1007/s11708-021-0775-7

摘要: In this paper, a photoelectrocatalytic (PEC) recovery of toxic H2S into H2 and S system was proposed using a novel bismuth oxyiodide (BiOI)/ tungsten trioxide (WO3) nano-flake arrays (NFA) photoanode. The BiOI/WO3 NFA with a vertically aligned nanostructure were uniformly prepared on the conductive substrate via transformation of tungstate following an impregnating hydroxylation of BiI3. Compared to pure WO3 NFA, the BiOI/WO3 NFA promotes a significant increase of photocurrent by 200%. Owing to the excellent stability and photoactivity of the BiOI/WO3 NFA photoanode and I/I 3 catalytic system, the PEC system toward splitting of H2S totally converted S2– into S without any polysulfide ( Sx n) under solar-light irradiation. Moreover, H2 was simultaneously generated at a rate of about 0.867 mL/(h·cm). The proposed PEC H2S splitting system provides an efficient and sustainable route to recover H2 and S.

关键词: bismuth oxyiodide (BiOI)/ tungsten trioxide (WO3) nano-flake arrays (NFA)     photoelectrocatalytic (PEC)     H2S splitting     H2     S    

Chemical deactivation of V

Xiaodong WU, Wenchao YU, Zhichun SI, Duan WENG

《环境科学与工程前沿(英文)》 2013年 第7卷 第3期   页码 420-427 doi: 10.1007/s11783-013-0489-0

摘要: V O -WO /TiO catalyst was poisoned by impregnation with NH Cl, KOH and KCl solution, respectively. The catalysts were characterized by X-ray diffraction (XRD), inductively coupled plasma (ICP), N physisorption, Raman, UV-vis, NH adsorption, temperature-programmed reduction of hydrogen (H -TPR), temperature-programmed oxidation of ammonia (NH -TPO) and selective catalytic reduction of NO with ammonia (NH -SCR). The deactivation effects of poisoning agents follow the sequence of KCl>KOH>>NH Cl. The addition of ammonia chloride enlarges the pore size of the titania support, and promotes the formation of highly dispersed V=O vanadyl which improves the oxidation of ammonia and the high-temperature SCR activity. K ions are suggested to interact with vanadium and tungsten species chemically, resulting in a poor redox property of catalyst. More importantly, potassium can reduce the Br?nsted acidity of catalysts and decrease the stability of Br?nsted acid sites significantly. The more severe deactivation of the KCl-treated catalyst can be mainly ascribed to the higher amount of potassium resided on catalyst.

关键词: V2O5-WO3/TiO2     potassium chloride     poisoning     reducibility     acid sites    

Cu-doped Bi/Bi2WO6 catalysts for efficient N2 fixation by photocatalysis

《化学科学与工程前沿(英文)》 2023年 第17卷 第10期   页码 1412-1422 doi: 10.1007/s11705-023-2312-1

摘要: In this paper, Cu-doped Bi2WO6 was synthesized via a solvothermal method and applied it in photocatalytic N2 immobilization. Characterization results showed the presence of a small amount of metallic Bi in the photocatalyst, indicating that the synthesized photocatalyst is actually Bi/Cu-Bi2WO6 composite. The doped Cu had a valence state of +2 and most likely substituted the position of Bi3+. The introduced Cu did not affect the metallic Bi content, but mainly influenced the energy band structure of Bi2WO6. The band gap was slightly narrowed, the conduction band was elevated, and the work function was reduced. The reduced work function improved the transfer and separation of charge carriers, which mainly caused the increased photoactivity. The optimized NH3 generation rates of Bi/Cu-Bi2WO6 reached 624 and 243 μmol·L–1·g–1·h–1 under simulated solar and visible light, and these values were approximately 2.8 and 5.9 times higher those of Bi/Bi2WO6, respectively. This research provides a method for improving the photocatalytic N2 fixation and may provide more information on the design and preparation of heteroatom-doped semiconductor photocatalysts for N2-to-NH3 conversion.

关键词: Bi2WO6     Cu doping     work function     photocatalytic N2 fixation     charge separation    

Pore structure of cementitious material enhanced by graphitic nanomaterial: a critical review

S.A. GHAHARI, E. GHAFARI, L. ASSI

《结构与土木工程前沿(英文)》 2018年 第12卷 第1期   页码 137-147 doi: 10.1007/s11709-017-0431-9

摘要: Carbon nano tubes (CNT) has been introduced as an efficient nanomaterial in order to improve the mechanical and durability properties of concrete. The effect of CNT on the microstructures of cementitious materials has been widely reported. This paper combines a critical review on the effect of CNT on the pore and microstructure of cement composite with a discussion on the porosity measurement of pastes containing CNT using mercury intrusion porosimetry techniques (MIP). It was found that, surface treatment by H SO and HNO solution forms carboxyl acid groups on CNTs’ surfaces that lead to the improvement of reinforcement. In this scope, this review paper involves analyzing the effect of CNT on the microstructure and the pore structure of cementitious materials. The existing methods of measuring the porosity of cementitious material are reviewed, in particular, the contact angle measurement is discussed in detail in which the most effective parameters and possible errors of calculation is presented.

关键词: carbon nano tubes     microstructure     porosity     mercury intrusion porosimetry     cement composite    

Effective regeneration of thermally deactivated commercial V-W-Ti catalysts

Xuesong SHANG, Jianrong LI, Xiaowei YU, Jinsheng CHEN, Chi HE

《化学科学与工程前沿(英文)》 2012年 第6卷 第1期   页码 38-46 doi: 10.1007/s11705-011-1167-z

摘要: An effective method for the regeneration of thermally deactivated commercial monolith SCR catalysts was investigated. Two types of regenerated solutions, namely NH Cl (1 mol/L) and dilute H SO (0.5 mol/L), were employed to treat the used catalyst. The effects of temperature and the regeneration process on the structural and textural properties of the catalysts were determined by X-ray diffraction, scanning electron microscopy, N adsorption/desorption, elemental analysis and Fourier transform infrared spectroscopy. The results suggest that the anatase phase of the used catalyst is maintained after exposure to high temperatures. Some of the catalytic activity was restored after regeneration. The catalyst regenerated by aqueous NH Cl had a higher activity than that of the catalyst treated by dilute H SO . The main reason is that the NH generated from the decomposition of NH Cl at high temperatures can be adsorbed onto the catalyst which promotes the reaction. The aggregated V O were partially re-dispersed during the regeneration process, and the intrinsic oxidation of ammonia with high concentrations of O is a factor that suppresses the catalytic activity.

关键词: V2O5-WO3/TiO2 catalysts     thermal deactivation     regeneration     NH4Cl     dilute H2SO4 solution    

Morphology selective construction of

Maher Darwish, Ali Mohammadi, Navid Assi, Samer Abuzerr, Youssef Alahmad

《化学科学与工程前沿(英文)》 2020年 第14卷 第4期   页码 561-578 doi: 10.1007/s11705-019-1808-1

摘要: Controlled growth of Bi WO nanorods with exposed [0 0 1] facets and the fabrication of an Fe O -Bi WO magnetic composite by a microwave-assisted polyol process, were achieved in this study. The adsorptivity and photocatalytic performance of the composite toward sunset yellow dye degradation were greatly enhanced by the -cyclodextrin cavities on its surface, firmly anchored through a cetyltrimethylammonium bromide linkage. A series of examinations and characterizations were carried out to determine the influence of various factors on the morphological modulation-photocatalytic behavior of the pure Bi WO prior to final functionalization. Changing the pH of the precursor solution impacted the formation of 0D, 2D, and 3D structures; however, the presence of hexamethylenetetramine surfactant induced the development of 1D nanorod structure. A reasonable crystal growth mechanism was proposed to elucidate the formation process. Conversely, the mechanism of the activity enhancement of -cyclodextrin functionalized Fe O -Bi WO , compared to that of the non-functionalized samples, could be realized with the assistance of chemical trapping experiments on sunset yellow, and was confirmed on the colorless antibiotic (sulfamethoxazole). The high performance and durability of this composite can be attributed to the facet-dependent activity, large adsorption capacity due to inclusion interactions, enhanced visible light absorption, and efficient charge separation.

关键词: β-cyclodextrin     Bi2WO6     shape controlled     nanorod     sunset yellow    

Fabrication of highly efficient Bi

Wei Mao, Lixun Zhang, Tianye Wang, Yichen Bai, Yuntao Guan

《环境科学与工程前沿(英文)》 2021年 第15卷 第4期 doi: 10.1007/s11783-020-1344-8

摘要: Abstract • A novel Bi2WO6/CuS composite was fabricated by a facile solvothermal method. • This composite efficiently removed organic pollutants and Cr(VI) by photocatalysis. • The DOM could promoted synchronous removal of organic pollutants and Cr(VI). • This composite could be applied at a wide pH range in photocatalytic reactions. • Possible photocatalytic mechanisms of organic pollutants and Cr(VI) were proposed. A visible-light-driven Bi2WO6/CuS p-n heterojunction was fabricated using an easy solvothermal method. The Bi2WO6/CuS exhibited high photocatalytic activity in a mixed system containing rhodamine B (RhB), tetracycline hydrochloride (TCH), and Cr (VI) under natural conditions. Approximately 98.8% of the RhB (10 mg/L), 87.6% of the TCH (10 mg/L) and 95.1% of the Cr(VI) (15 mg/L) were simultaneously removed from a mixed solution within 105 min. The removal efficiencies of TCH and Cr(VI) increased by 12.9% and 20.4%, respectively, in the mixed solution, compared with the single solutions. This is mainly ascribed to the simultaneous consumption electrons and holes, which increases the amount of excited electrons/holes and enhances the separation efficiency of photogenerated electrons and holes. Bi2WO6/CuS can be applied over a wide pH range (2–6) with strong photocatalytic activity for RhB, TCH and Cr(VI). Coexisiting dissolved organic matter in the solution significantly promoted the removal of TCH (from 74.7% to 87.2%) and Cr(VI) (from 75.7% to 99.9%) because it accelerated the separation of electrons and holes by consuming holes as an electron acceptor. Removal mechanisms of RhB, TCH, and Cr(VI) were proposed, Bi2WO6/CuS was formed into a p-n heterojunction to efficiently separate and transfer photoelectrons and holes so as to drive photocatalytic reactions. Specifically, when reducing pollutants (e.g., TCH) and oxidizing pollutants (e.g., Cr(VI)) coexist in wastewater, the p-n heterojunction in Bi2WO6/CuS acts as a “bridge” to shorten the electron transport and thus simultaneously increase the removal efficiencies of both types of pollutants.

关键词: Photocatalysis     Bi2WO6/CuS     Organic pollutants     Cr(VI)     Synergistic effect    

Recent progress in MoS

Soheil RASHIDI, Akshay CARINGULA, Andy NGUYEN, Ijeoma OBI, Chioma OBI, Wei WEI

《能源前沿(英文)》 2019年 第13卷 第2期   页码 251-268 doi: 10.1007/s11708-019-0625-z

摘要: In an era of graphene-based nanomaterials as the most widely studied two-dimensional (2D) materials for enhanced performance of devices and systems in solar energy conversion applications, molybdenum disulfide (MoS ) stands out as a promising alternative 2D material with excellent properties. This review first examined various methods for MoS synthesis. It, then, summarized the unique structure and properties of MoS nanosheets. Finally, it presented the latest advances in the use of MoS nanosheets for important solar energy applications, including solar thermal water purification, photocatalytic process, and photoelectrocatalytic process.

关键词: 2D nanomaterial     molybdenum disulfide     solar energy conversion     solar thermal conversion     photocatalytst     photoelectrocatalyst    

Review of recent developments in cement composites reinforced with fibers and nanomaterials

Jianzhuang XIAO, Nv HAN, Yan LI, Zhongsen ZHANG, Surendra P. SHAH

《结构与土木工程前沿(英文)》 2021年 第15卷 第1期   页码 1-19 doi: 10.1007/s11709-021-0723-y

摘要: The quest for high-performance construction materials is led by the development and application of new reinforcement materials for cement composites. Concrete reinforcement with fibers has a long history. Nowadays, many new fibers associated with high performance and possessing eco-environmental characteristics, such as basalt fibers and plant fibers, have received much attention from researchers. In addition, nanomaterials are considered as a core material in the modification of cement composites, specifically in the enhancement of the strength and durability of composites. This paper provides an overview of the recent research progress on cement composites reinforced with fibers and nanomaterials. The influences of fibers and nanomaterials on the fresh and hardened properties of cement composites are summarized. Moreover, future trends in the application of these fibers or of nanomaterial-reinforced cement composites are proposed.

关键词: cement composites     fiber     nanomaterial     mechanical property     durability    

Effective degradation of tetracycline by mesoporous Bi

Xiaolong CHU,Guoqiang SHAN,Chun CHANG,Yu FU,Longfei YUE,Lingyan ZHU

《环境科学与工程前沿(英文)》 2016年 第10卷 第2期   页码 211-218 doi: 10.1007/s11783-014-0753-y

摘要: Bi WO was synthesized with a hydrothermal method at different pHs and used for the degradation of tetracycline (TC) in water. The mesoporous Bi WO prepared at pH 1 (BWO-1) displayed the highest adsorption and degradation capacity to TC due to its large surface area and more efficient capacity to separate photogenerated electrons and holes. 97% of TC at 20 mg·L was removed by BWO-1 at 0.5 g·L after 120 min irradiation under simulated solar light. Only 31% of the total organic carbon (TOC) was removed after 360 min irradiation although the TC removal reached 100%, suggesting that TC was mainly transformed to intermediate products rather than completely mineralized. The intermediates were identified by high-performance liquid chromatography-time of flight-mass spectrometry (HPLC-TOF-MS) and possible photodegradation pathways were proposed.

关键词: Bi2WO6     hydrothermal synthesis     tetracycline (TC)     photocatalysis    

Facile synthesis of hierarchical flower-like Ag/Cu

Mengyun Wang, Shengbo Zhang, Mei Li, Aiguo Han, Xinli Zhu, Qingfeng Ge, Jinyu Han, Hua Wang

《化学科学与工程前沿(英文)》 2020年 第14卷 第5期   页码 813-823 doi: 10.1007/s11705-019-1854-8

摘要: Novel, hierarchical, flower-like Ag/Cu O and Au/Cu O nanostructures were successfully fabricated and applied as efficient electrocatalysts for the electrochemical reduction of CO . Cu O nanospheres with a uniform size of ~180 nm were initially synthesized. Thereafter, Cu O was used as a sacrificial template to prepare a series of Ag/Cu O composites through galvanic replacement. By varying the Ag/Cu atomic ratio, Ag /Cu O, having a hierarchical, flower-like nanostructure with intersecting Ag nanoflakes encompassing an inner Cu O sphere, was prepared. The as-prepared Ag /Cu O samples presented higher Faradaic efficiencies (FE) for CO and relatively suppressed H evolution than the parent Cu O nanospheres due to the combination of Ag with Cu O in the former. Notably, the highest CO evolution rate was achieved with Ag /Cu O due to the larger electroactive surface area furnished by the hierarchical structure. The same hierarchical flower-like structure was also obtained for the Au /Cu O composite, where the FE (10%) was even higher than that of Ag /Cu O. Importantly, the results reveal that Ag /Cu O and Au /Cu O both exhibit remarkably improved stability relative to Cu O. This study presents a facile method of developing hierarchical metal-oxide composites as efficient and stable electrocatalysts for the electrochemical reduction of CO .

关键词: bimetallic nanostructure     hierarchical metal/oxide nanomaterial     galvanic replacement     electrochemical reduction of CO2    

标题 作者 时间 类型 操作

WO3 nanomaterials synthesized via a sol-gel method and calcination for use as a CO gas sensor

Diah SUSANTI,A.A. Gede Pradnyana DIPUTRA,Lucky TANANTA,Hariyati PURWANINGSIH,George Endri KUSUMA,Chenhao WANG,Shaoju SHIH,Yingsheng HUANG

期刊论文

Comparison of the morphology and structure of WO

Diah Susanti, Stefanus Haryo N, Hasnan Nisfu, Eko Prasetio Nugroho, Hariyati Purwaningsih, George Endri Kusuma, Shao-Ju Shih

期刊论文

Z-scheme CdS/WO on a carbon cloth enabling effective hydrogen evolution

期刊论文

Photoelectrocatalytic generation of H and S from toxic HS by using a novel BiOI/WO nanoflake array photoanode

期刊论文

Chemical deactivation of V

Xiaodong WU, Wenchao YU, Zhichun SI, Duan WENG

期刊论文

Cu-doped Bi/Bi2WO6 catalysts for efficient N2 fixation by photocatalysis

期刊论文

Pore structure of cementitious material enhanced by graphitic nanomaterial: a critical review

S.A. GHAHARI, E. GHAFARI, L. ASSI

期刊论文

Effective regeneration of thermally deactivated commercial V-W-Ti catalysts

Xuesong SHANG, Jianrong LI, Xiaowei YU, Jinsheng CHEN, Chi HE

期刊论文

Morphology selective construction of

Maher Darwish, Ali Mohammadi, Navid Assi, Samer Abuzerr, Youssef Alahmad

期刊论文

Fabrication of highly efficient Bi

Wei Mao, Lixun Zhang, Tianye Wang, Yichen Bai, Yuntao Guan

期刊论文

Recent progress in MoS

Soheil RASHIDI, Akshay CARINGULA, Andy NGUYEN, Ijeoma OBI, Chioma OBI, Wei WEI

期刊论文

Review of recent developments in cement composites reinforced with fibers and nanomaterials

Jianzhuang XIAO, Nv HAN, Yan LI, Zhongsen ZHANG, Surendra P. SHAH

期刊论文

Effective degradation of tetracycline by mesoporous Bi

Xiaolong CHU,Guoqiang SHAN,Chun CHANG,Yu FU,Longfei YUE,Lingyan ZHU

期刊论文

虞晓含:中医话健康,食补改善免疫力(2020年3月1日)

2022年04月18日

会议视频

Facile synthesis of hierarchical flower-like Ag/Cu

Mengyun Wang, Shengbo Zhang, Mei Li, Aiguo Han, Xinli Zhu, Qingfeng Ge, Jinyu Han, Hua Wang

期刊论文